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Abstract The existence of various families of super
conducting materials and their TC values are qualita-
tively rationalized within a simple model. Novel families
of superconducting materials, particularly those based
on fluoride and hydride anions, are predicted.
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Introduction

The fascinating variety of existing superconducting
materials, in particular of those with high values of
critical superconducting temperature, TC, imposes to a
chemist a fundamental question: what chemical ele-
ments should constitute the backbone of a successful
superconductor (SC)? While some believe this question
might be answered by somewhat stochastic experiments
(huge ‘‘mixing matrix’’ screening a certain range of
chemical compositions [1]), by statistical analysis [2, 3]
or simply coincidentally pop out of the blue, and others
think there is no good answer to this question, we have
taken a still different approach. Given the importance
of nuclear motion (including electronphonon coupling)
for both low- TC and high- TC superconductivity [4, 5]
and the existence of the universal scaling relationship
for all temperature ranges [6] we have analyzed how
certain nuclear motions influence the electronic struc-
ture of diatomic and triatomic molecular species built
of one or maximum two kinds of chemical elements,

while treating metallic and nometallic elements on an
equal basis [7–9]. Then we have linked features of
vibronic coupling for the molecular and solid-state
systems [10], which in turn allowed us to predict a
novel family of SCs [11–13].

We now extend previous qualitative picture [7–13] to
all chemical elements in the periodic table that are useful
for constructing new materials [14] and supplement it
with the quantitative approach, while computing for the
first time the values of vibronic coupling constants in
diverse systems [15]. We also predict high- TC super-
conductivity in substantially covalent fluorides and hy-
drides.

Methods

The geometry of the molecules studied were optimized
while freezing them at D¥h symmetry (see [8, 9]). Such
symmetric linear species serve as good models for the
transition state in SN2 reactions. Then the vibrational
force constants were computed analytically [16], the
most important for us being that for the antisymmetric
stretching mode (this mode often showed an imaginary
frequency; in such cases we formally assign a minus sign
to corresponding force constant).

Calculations were performed using Becke’s three-
parameter hybrid functional combined with the Lee–
Yang–Parr correlation functional (B3LYP). We used the
LANL relativistic pseudopotential followed by double
zeta valence basis set for heavier elements (Br and I) and
Pople’s 6-311++G** basis set for the light atoms (H,
Li, F and Cl). Our calculations were performed with the
Gaussian 03 package [17].

Values of force constants, k, electronic coupling ele-
ments, D, and vibronic coupling constants, V, were
determined by fitting the Potential Energy Surfaces
(PESs, scanned along the normal coordinate of the
antisymmetric stretching mode, Qas) to a classical three-
parameter model [8]. Details of the fitting procedures are
described in the Appendix.
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Results

Analysis of vibronic coupling constants in linear
symmetric triatomic radicals

First, we discuss the vibronic coupling constants, V, in
a series of simple triatomic radicals. Analysis of the
numerical results and the relationship between V and
the hardnesses of the component atoms (Table 1 and
Fig. 7 in the Appendix) allows us to draw the conclu-
sion that it is impossible to obtain large vibronic cou-
pling constants without the presence of F or H atoms
in a molecule [18, 19]. Species that do not contain these
atoms (built of softer nonmetals, such as Cl, Br and I)
typically have V two orders of magnitude smaller than
the hardest F-based and H-based molecules (F2H, H2F
and H3) [20–24]. We note the interesting case of Li3,
composed exclusively of metallic atoms—which has V
and k comparable to those of I2Cl, but the electronic
coupling (D) in the former is much larger than in the
latter. This results in the appearance of an energy
minimum along Qas for I2Cl, while the potential
energy surface for Li3 is nearly quadratic with respect
to Qas [25].

What are the common features of the existing
moderate-TC and high-TC superconductors?

Analysis of the existing families of SCs allows for the
observation that all moderate- TC (23 K < TC <
77 K) and high- TC (>77 K) superconductors must
contain one of the following nonmetals: B, C, N or O.
For MgB2 [26–38] the B sublattice superconducts,
while for alkali-doped fullerides [27] it is the C cage.
For more complex multinary materials, it is typically a
hole-doped or electron-doped binary backbone which
is predominantly responsible for superconductivity
(HfN for LixHfNCl [28], BiO for KxBa1-xBiO3 [29, 30]
and CuO in all oxocuprate materials, including clas-
sical La2-xBaCuO4 [31] and the infinite layer model
compound (Ca1-xSrx)1-yCuO2 [32]). Also, other impor-
tant SCs with lower TC values exhibit a single-element
or two-element backbone crucial for superconductivity,
for example Si in Na2Ba6Si46 [33], MoS in PbMo6S8
[34] and RuO for Sr2RuO4 [35] or NiC in MgCNi3
[36]. Only very seldom does the superconducting
scaffold contain three different elements, and most
often two of them have similar valence orbital ener-
gies, so that their atomic orbitals do not give rise to
distinctly separate bands in the crystal (for example
Pb1-xBixO in BaPb1-xBixO3 [37]), or Pd1-xAgxH in Pd1-
xAgxHy [38].

In Fig 1, we plot the general qualitative relationship
between the TC values of various families of inorganic
superconductors and the first ionization potential of the
most electronegative element constituting the conduct-
ing backbone of each compound.

Thus, the appearance of successful superconductivity
in diverse classes of materials strongly relies on the
presence of small and as hard and electronegative as
possible atoms (or anions) of nonmetals [39] in the
conducting scaffold of a chemical compound. This is in
good agreement with our conclusions on the strength of
vibronic coupling from the previous section.

Where to search for novel high-TC materials?

The first indication from our studies is that high- TC

superconductivity cannot be found in materials built
exclusively from metallic elements. The second impor-
tant message is such that superconductivity with TC

values higher than those for oxides should be found in
hydride and fluoride materials [40, 41]. The third qual-
itative extrapolation (see Appendix) is that providing
metallic conductivity using ‘‘hard’’, unpolarizable va-
lence electrons at extremely low-lying Fermi level, is
technically difficult (due to the preference for electron
localization) but it may ultimately deliver room tem-
perature SC. For this purpose, however, charge locali-
zation, inherent for systems built of strongly
electronegative atoms, should be avoided by (i) bringing

Fig. 1 Various families of inorganic superconductors with their TC

values shown versus the first ionization energy (IP/eV) for the more
electronegative of the atoms that form the conducting backbone of
each compound. Note that for all superconducting salts shown
here, the states at the Fermi level are composed of strongly mixed
valence states of cations and anions (substantial ‘covalence’).
Compare also to strong association of TC with the work function
[2]
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into the conducting backbone other electronegative
species, which will compete for valence electrons with
atoms of nonmetals [42], (ii) introducing doping and (iii)
using adequate crystal engineering and providing the
desired electronic dimensionality.

The ‘‘materials aspect’’ of vibronic coupling is illus-
trated in Fig 2. We emphasize elements that provide
moderate- TC and high- TC superconductivity in existing
materials (in green), those we predict should deliver
high- TC values due to large vibronic coupling constants
(in blue), and those, for which TC enhancement is ex-
pected predominantly due to their small atomic mass (in
bright blue).

In the spirit of our earlier observations that the
crossing of electronic potential energy surfaces enor-
mously increases vibronic coupling strength [9, 10], we
now need to search for the appropriate elemental part-
ners for the promising fluoride and hydride anions,
which could then the form binary scaffold of novel
prospective SC materials.

Thus, for fluorine, combinations with Ag [11–13] and
Hg at high-oxidation states [43], and with Sb, Bi or Tl
[44], show remarkably large covalence [42] and merit
further studies. For hydrogen, H-rich molecular hy-
drides of Si [45], B, P, W [46], Ta [46] and Re [47], as yet
unknown multinary hydrides of Eu [48], Yb [48, 49] and
Tm [49] and novel multinary hydrides of noble metals
(Pd, Ag and Pt) are of interest. Along with large elec-
tron–phonon coupling, hydrides should also benefit
from very large phonon frequencies.

The analysis presented here gives, of course, no de-
tailed recipe for the stoichiometry of novel SC materials,
and does not guarantee the appearance of SC at any
particular composition. This is obvious given the enor-
mous sensitivity of known SCs to the type and level of
doping [50], to minor distortions of the crystal structure
[51], etc. However, given myriads of multinary chemical
compounds which can be obtained from all chemical
elements [14], our approach benefits from a significant
reduction of potentially interesting combinations of
elements, and allows us to concentrate on specific, nar-
row families of chemical compounds [52].

Appendix

Determination of vibronic coupling constants
in linear symmetric triatomic radicals

Fig. 3 shows the Potential Energy Surface (PES) along
the antisymmetric stretching coordinate, Qas, of the
symmetric (at Qas = 0 Å) linear triatomic radical, here
represented by Br2H

Fig. 2 Elements of the Periodic Table that provide moderate- TC

and high- TC superconductivity in existing materials (in green),
those we predict should deliver high TC values due to large vibronic
coupling constants (in blue), and those, for which TC enhancement
is expected predominantly due to small atomic mass (in bright
blue). Elements useful for the construction of new materials are in
dark yellow, the remaining ones in bright yellow. Note, H is placed
here in Group 17, by He, as H needs one e� to achieve the
configuration of a doublet
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Fig. 3 The computed PES along the antisymmetric stretching
coordinate, Qas, of the symmetric linear radical, Br2H
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From this plot, two separate force constants have
been calculated: one corresponding to the imaginary
antisymmetric stretching mode at Qas = 0 Å, further
called k¢�, and force constant at the minimum of the
PES (here at Qas = Qmin = 0.26 Å), further called k¢¢.
The notation used here is identical as that used in Ref.
[8]. Typically, we have used between 4 and 10 points on
the PES for the quadratic fit (see Figs. 4, 5 and

Using the known values of k¢� and k¢¢, the value of
the force constant in the hypothetical absence of
vibronic coupling, k, has been determined from the
best fit to the equation: k¢¢ = k� k3/(k� k¢¢)2. In

case of Br2H, the value of k = 66.1 eV Å�2 was
obtained.

The preliminary estimates of the values of the vib-
ronic coupling constant, V, and of the electronic cou-
pling constant, D, was calculated as follows. First, (V2/
D) = k� k� = 75.08 eV Å�2. Second, V={[(k� 2) �
(V2/D)� 2]/(Qmin

2)}� 0.5. Thus, V = 36.3 eV Å�1 and D
= 17.5 eV. These preliminary estimates were used as
starting values in the fit of the computed PES to the
equation E=1/2kQas

2 + (D2+V2 Qas
2 )0.5+D 1. From

the fit, new set of parameters has been obtained: k =
75.5 eV Å�2, D = 22.0 eV, and V = 43.1 eV Å�12.

The final values of k, V and D for other chemical
species have been determined in an analogous way.

Figure 6 shows the comparison of computed and
fitted PES for Br2H. The fitted PES reproduces all
essential features of computed PES, including the posi-
tion of Qmin. The fitted and computed curves are virtu-
ally undistinguishable.

In Table 1, we show the value of the optimized E–
X bond length, R0, for a variety of molecules, the
analytical value of the force constant for the anti-
symmetric stretching, kanal, position of the minimum
(along Qas) of PES, DQas, value of force constant in
the absence of vibronic coupling, k, electronic cou-
pling element, D, and the vibronic coupling constant,
V, determined from the fitting procedure using a
three-parameter model [8].

For F2H, H3 but also for Li3 (and for other species
that do not exhibit an imaginary frequency along Qas),
the three parameters of the fitting procedure are strongly
correlated with one another, i.e. equally good fits may be
obtained for various sets of these parameters. This im-
plies large relative errors in determining k, D, and V. We
have omitted the fitting procedure for such molecules,
while making an exception for Li3, in order to compare
it to interhalogen compounds.

y = 7,4281x 2 - 3,7911x + 
0,3442

R2 = 0,9967
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Fig. 4 The computed PES of Br2H in the vicinity of energy
minimum. Force constant at a minimum, k¢¢ = 14,856 eV Å�2, can
be calculated from the quadratic fit
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Fig. 5 The computed PES of Br2H in the vicinity of energy
maximum (at Qas = 0 Å). Force constant at a maximum, k¢� =

�8,975 eV Å�2, can be calculated from the quadratic fit
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Fig. 6 Comparison of the computed and fitted PES of Br2H

1The value of the energy at Qas=0 has been normalized to zero for
all systems. This is why D needs to be added to the equation for the
energy in comparison with Eq. 1 in Ref. [8].
2In the three-parameter model one deals with two electronic states
coupled through one normal vibration. This means that values of k,
D and V determined here for real molecules do not refer to any
excited state but rather represent the global effect of coupling of the
ground state with all excited states of appropriate symmetry. For
example, the ground state of the H3 radical transition state (Ru

+)
couples with all excited R g

+ states via a normal vibration of ru

symmetry (i.e. along Qas). Overall coupling is so strong in this case
that distortion leads to an energy decrease of the ground state.

326



Vibronic coupling constants versus Pearson’s hardness
of the bridging atom

In Fig. 7 we show values of V plotted versus Pearson’s
hardness, g, of the bridging element X (g/eV: 7.01 F,
6.42 H, 4.70 Cl, 4.24 Br, 3.70 I).

The harder the bridging atom (F > H > Cl > Br >
I), the larger the value of V. For the same bridging atom,
the harder the end atoms (H > Cl > Br), the larger the
value of V 3. Confirmation of a possible decrease of V

for very large values of hardness, requires a more rep-
resentative statistical probe.

The TC values for selected families of materials
versus the Mulliken electronegativity of the most
electronegative element

In Fig. 8, we show experimental values of TC multi-
plied by the m1/2 factor (i.e. TC divided by the factor
that is proportional to the pre-exponential expression
from the BCS theory), plotted versus Mulliken elec-
tronegativity, l, of the most electronegative atom in
the compound considered. Numerical data is collected
in Table 2

The expected values of (TC m0.5) for N, H, P, C, Cl
and F-based materials can be translated back to the
expected values of TC in these materials. The fit indicates
the possibility of great improvement of the TC values for
phosphides (61 K), carbides (102 K), and nitrides
(136 K), while it delivers astonishingly high TC values
for fluorides (268 K = �5�C) and hydrides (>490 K,
>210 C).
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Fig. 7 Values of vibronic coupling constant, V, versus Pearson’s
hardness, g, of bridging element X, for three families of molecules
(H2X, Cl2X and Br2X). Values of V for I2X molecules have not
been shown as they are nearly the same as those for corresponding
Br2X ones. Values of V for molecules, which are not unstable along
Qas are very small, and have been taken as null

Table 1 Values of R0, DQas, k,
D, and V, and errors of k, D
and V (for details see text)

Typical error of the DQas value
is ±0.005 Å
a Erroneous analytical values of
force constants at Qas = 0 are
computed for these molecules.
Note that kanal corresponds to
k¢� from the model, and not to
the fitted k!
b Problems with reliable deter-
mination of PES; perhaps more
than one low-lying electronic
states is involved in vibronic
coupling with the ground state

E2X R0 (Å) kanal (mDyne Å�1) DQas (Å) k (eV Å�2) D(eV) V (eV Å�1)

F2H 1.1164 �2.84 0.17 363±71 120±48 214±63
H2F 1.1500 �3.37 0.25 314±4.4 91.2±2.6 178.4±3.6
H3 0.9310 �0.32 0.07 250±57.6 121.7±57 175±61
Cl2H 1.5000 �0.67 0.15 162±22.2 64.9±18.1 103.9±21.4
H2Cl 1.5000 �0.89 0.20 123±3 31.5±1.5 64.8±2.3
Cl2F 1.9470 �3.71 0.29 92.0±3.2 23.9±1.8 50.8±2.6
H2Br 1.6640 �0.74 0.22 88.5±1.3 22.7±0.7 47.0±1.0
Br2H 1.7112 �1.48 0.26 75.5±1.7 22.0±1.0 43.1±1.4
I2H 1.9057 �1.30 0.28 62.7±5.3 20.4±3.7 37.9±4.9
H2I 1.8090 �0.29 0.15 69.1±0.5 16.6±0.3 34.8±0.4
Br2F 2.0890 �1.35 0.23 68.3±29.6 12.3±10.7 31.1±19.5
F3 1.6322 �32.5a 0.25 52.5±2.3 1.61±0.20 14.1±0.82
I2F 2.2110 �0.66 0.18 21.4±1.8 0.33±0.14 4.57±0.63
Cl3 2.2590 �0.96 0.15 16.4±1.6 0.76±0.17 3.96±0.59
Br2Cl 2.4870 +2.01a 0.17 10.2±0.3 0.25±0.02 2.16±0.09
I2Cl 2.6777 �2.48 0.24 8.2±0.5 0.27±0.03 2.15±0.15
I2Br 2.8800 �6.17 0.11 7.1±0.25 0.08±0.01 0.99±0.05
Br3

[b,c] 2.6710 �0.21a NA
I3
[c] 3.0334 +0.44a NA
F2Cl 1.7730 +4.32 NA
F2Br 1.9448 +3.20 NA
F2I 2.0497 +3.04 NA
Cl2Br 2.4450 +0.25 NA
Cl2I 2.5744 +1.19 NA
Br2I 2.8191 +1.01 NA
Li3 2.8850 +0.365 NA 3.5±0.6 1.1±0.7 1.4±0.7

3Values of V are very large for interhalogen and H-containing
compounds. This is why enormously large pressures are required to
metallize halogens, while no metallization of H2 has been achieved
so far using static pressures.
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